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Figure 1: Purdue Visualization and Spatial Test
(PVST). The student infers the rotation of the

object in the top row and applies that rotation to
the object in the middle row.
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Abstract. Teaching is maximally effective when targeted to a student’s cognitive or
developmental level. This paper describes the construction and evaluation of the
Rotation Tutor, which uses intelligent methods to dynamically adapt problems to a
user’s fluctuating skill level in the domain of 3-dimension rotation of objects. We first
measured the complexity of rotation tasks and then associated these tasks with user
skills. The Tutor used this complexity metric to assesses a student’s ability in real time
and generate appropriate tasks to facilitate a close match between skill level and
learning. The intelligent multimedia tutors maximize their effectiveness for a broad mix
of students while minimizing the development time and cost for the faculty involved.

1 Adapting Teaching to Cognitive Level
Learning and cognitive development are tightly coupled; cognitive theory has

informed the design of educational curricula since the beginning of the twentieth century
including decisions about when to teach a particular topic or which pedagogical method
to use (e.g., constructivist or drill/practice) [1]. However, people vary widely in
developmental levels and an individual’s competence might vary from moment to
moment based on social context, motivation and physiological state [2-3]. A child can
exhibit improved developmental levels if she has the support of an experienced peer [3].
Since it is not feasible to construct separate tutors for ever population of students, more
adaptable tutors are needed.

This project sought to advance the understanding of human visualization and spatial
reasoning and to use this knowledge to develop computer-based visualization tutors.
Visualization and spatial skills are integral to human reasoning and critical to a wide
variety of topics across science, mathematics and engineering. Yet, research indicates that
adults and college students have difficulty learning to visualize and reason spatially about
the transformation of physical objects around rotational axes [4-5]. Faculty and
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Figure 2. The Tutor provides two views of an object
(right) and the student identifies features of the rotation

by clicking (left), see Figure 3.

Figure 3. The student clicks features of the inferred
rotations, including orthogonal axes, direction

clockwise (C) or counterclockwise (CW) and number
of degrees (90, 180, or 270).

researchers have little understanding of how to teach spatial reasoning skills.

2 Overview of the Rotation Tutor
The problem domain of the
Rotation Tutor originates from
the Purdue Visualization
and Spatial Test (PVST), Figure
1, which as a pencil and paper
test, has been used for years to
identify student visualization
skills. The problem is easy to

describe. In the top row, two views of
Object 1 are presented and the student
infers the rotation required to rotate the
object from the left view to the right. The
student is then asked to apply that same
rotation to Object 2 (middle row, Figure
1).

The Rotation Tutor tracks a student while she infers the rotation of Object 1. The Tutor
models all required skills and is sensitive to differences among an individual's spatial
abilities. It initially assigns .5 probability that the student knows each skill (Section 4)
and provides two views of a a fairly simple object at the beginning, right Figure 2. The
student is asked to infer the rotation and to click on the features of the needed rotation,
Figure 3,  (e.g., orthogonal axes, direction clockwise (C) or counter-clockwise (CW), and
number of degrees (90,180, or 270)). The student’s solution is automatically submitted,
Figure 4. If correct, the tutor assigns a higher probability for the associated skills and
selects a more difficult problem. When the average of the major skills rise above
threshold, the student is promoted to the next tutor program (Phase 2).

If the student’s solution is not correct, the tutor provides four levels of graduated
hints, including an animated version of the student’s rotation steps (“play” a 3D
animation of the rotation, left Figure 5), and several alternative correct solutions. If one
(or many) sub-skill(s) drop below the current remediation level, a flag is sent to the
Student Model (Section 4) which then requests a textual remediation for that skill.
Graduation or remediation levels are adjusted dynamically based on the student’s
performance.  Students who have been struggling are allowed to “graduate” at a lower
value or are remediated sooner, while stronger students are pushed to graduate at a higher
score and remediation is delayed.  This behavior is designed to mimic traditional
teaching. Feedback continues as long as the student continues to give wrong answers and
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Figure 4. The student’s inferred rotation is
automatically submitted to the Rotation Tutor.

remediation is provided for a specific skill, if the Student Model indicates that the
student’s skill is below threshold.

3  Learning Complexity in Rotation Skills
 This section describes the cognitive studies that identified the assumed rotational

skills. Engineers have real difficulties performing mental rotations. We combined
research paradigms from psychology, education, engineering and computer science to
advance the basic understanding of cognitive models of visualization and to understand
cognitive and mental processes that students use to visualize objects and reason about
their spatial transformations. Such problems may well overload visual short-term
memory (e.g., keeping track of the 3-D orientation of a complex figure rotated possibly
around 3 axes) and training should break the problems down to several stages. We
wanted students to be trained generally to develop good solutions to various visualization
problems, including box folding, quadrilateral folding and engineering drawing. Eye
trackers were used to infer strategies that individuals use and to test alternative theories of
how individuals represent mentally and reason spatially about 3-D objects and their
transformations. We identified which parts of the task are most difficult and evaluated
strategies that students might be taught that could reduce the difficulty of the most
problematic portions of these tasks.

Skills Analysis. There are six logically different rotations around a single axis, or a
total of 18 logically different rotations around either the x, y or z axes.  Continuing, there
are a total of 36 logically different rotations around any one pair of axes, so there are a
total of 3 X 36 = 108 different pairwise rotations of axes.  And, finally, there are a total of
216 different logically different combinations of rotations around all three axes.
Interestingly, these 342 logically different rotations can be parsed into 24 different final
sets, each set corresponding to a different view of the initial object after rotation.  Thus,
there is a many to one mapping: many logically different rotations can map an initial
view onto a final view of a object.

Problems in the PVST are made more difficult by making the rotated object more
complex.  We identified rotation characteristics that differentiated objects that were easy
to rotate from those that were hard to rotate and identified various subskills that governed
student performance. Performance is broken into into two phases, Table 1. In Phase 1,
students need to correctly infer the rotation of Object 1 (top row, Figure 1). Second,
students need to apply this rotation to Object 2. Experiments showed that students had
difficulty inferring the rotation of Object 1 and difficulty applying that rotation to Object
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2. One experiment tested students’ ability to infer rotations of Object 1 and one tested
students’ ability to apply rotations to Object 2. Students have a surprisingly hard time
identifying the rotation that maps view 1 of Object 1 into view 2 of this same object. 25%

of the subjects could not correctly infer single axis 90 degree rotations and fully 60%
of the subjects could not correctly infer two axis rotations, where the rotation around one
axis was 90 degrees and the rotation around the other was 180 degrees.

 Students have equal if not greater difficulty applying a rotation to view 1 of Object
2 in order to generate the correct answer to a problem. In fact, it is the generation skill
that is the fundamental missing ingredient in the problems.  If students could easily

generate a rotation, they would not have difficulty with any of the 90 degree
rotations.

Subskills. Experimental data shows that students have increasing difficulty as the
number of axes around which a object is rotated increases.  Thus, we broke down the
rotation problems into one, two and three axis problems and, within each made further
delineations. We ensured that students can equally well generate 90, 180 and 270 degree
rotations of a object clockwise or counterclockwise around the x, y or z axes.  For two
axis problems, we ensured that students can equally well generate all combinations of
rotations around two axes, combinations which are determined by the axis of rotation, the
degrees of rotation around each of the axes, and the direction of rotation.  And finally, for
three axis problems we ensured a similar capability across all possible combinations.

Knowledge
Type

Parameters Features
of Parameter

Phase 1:
  Recognize
   Rotation

Scan Object 1
(first row) and
infer its rotation

Shape
complexity. C or
CW, axis and
degree rotation

Identify Object 1 (hidden lines, cuts, inclined
surfaces, intersections, oblique lines). Infer C or
CW rotation along X, Y, or Z axis, and 90, 180,
or 270 degree rotation.

Phase 2:
    Apply
    Rotation

Transform Object 2
(second row) based on
the inferred rotation.

Rotation along
axis, degree, and
C/CW.

Apply rotation from Object 1  to Object 2.
Rotate Object 2 C/CW, along X, Y, or Z axes;
and 90, 180, 270 degree

Knowledge
Type

Parameters Features of
Parameter

Phase 1:
 Recognize
   Rotation

Scan Object 1
(top row) and
infer its rotation

Shape
complexity. C or

CW, axis and
degree rotation

Identify shape of Object 1 (hidden lines, cuts,
inclined surfaces, intersections, oblique lines).
Infer C or CW  rotation along X, Y, or Z axis,
and  90, 180, or 270 degree rotation.

Phase 2:
    Apply
    Rotation

Transform Object 2
(middle row)
according to the
inferred rotation.

Rotation along
axis, degree, and

C/CW.

Apply rotation from Object 1  to Object 2.
Rotate Object 2 C/CW, along X, Y, or Z axes;
and 90, 180, 270 degree

Table 1. Cognitive Tasks in the Purdue Visualization and Spatial Test.

4 Probabilistic Measure of Presumed Knowledge
 The Rotation Tutor contains significant intelligence in the form of an expert system

designed to generate problems dynamically.  Based on the student’s current skill values,
e.g., complexity of the object and rotation, the tutor isolates the “weakest-link” and
targets new problems for that area.  In this way, either the student learns to recognize this
feature by shear practice, or a remedial need is identified.  If no clear weak area can be
identified, or if each skill has been brought up to the same level as the other skills, the
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Figure 6. The student’s
“skill” values are stored as

“probably known”
coefficients, first as Object
Ability Skills, (containing
edges, faces, protrusions,

notches) and then as Rotation
Ability Skills (including axes,

degrees and direction).

Figure 5. The tutor provides four levels of graduated hints (two shown) including an animated version of the
student’s proposed rotation steps (“play” button, left ) as well as alternative correct solutions.

Figure 7: The linear approximator returns the
resulting probability that a student knows a skill, ased
on the skill's current probability, and the “hint level”
for the given question.

expert system defaults to a simple increasing difficulty approach.  The expert system
queues multiple related problems and keeps track of recent problems to avoid redundancy

and boredom.

Domain Knowledge. We enumerated and categorized the total number of logically
different rotations (assuming that the number of different levels of degrees of rotation is
itself finite).  Problems about the same topic can be of varying levels of complexity.
Rotation adjusted the level of complexity of the presented problem based on the number
of subskills required and the complexity of their application.  The Domain KB
coordinates the storage and retrieval of all objects available to the Tutor.  It stores files
for 3D model manipulation, as well as pre-configured 2D drawing of each object’s key
orientations.  The Domain KB also contains vital property values for each object, as well
as all the views.  The API provides for retrieval of a closest match object and pair of
views, given desired object and rotation parameters.  [???Dan will write up how each
object was categorized.  ie- what “edges=2” means.]

Student Model. The Student Model aids in pedagogical decision making. It governs
the maintenance of the student’s “skill” values stored as a “probably known” coefficient
for each of seven sub-skills: edges, faces, protrusions, notches, axes, degrees and
direction, Figure 6. The first four skills are categorized under Object Ability Skills, which
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provides an average probability value for this master skill.  The latter three sub-skills are
grouped as Rotation Ability Skills and an average provided.  Based on information from
the (??? Linear Approximation) the Student Model is responsible for triggering when a
student has met the criteria for "graduation" to the next level, or when a sub-skill requires
remediation.

Linear Approximation—??Check Shute [7]  Based on the skill's current
probability, and the “hint level” for the given question, the??? returns the resulting
probability for that skill, Figure 7. The curves that dominate this calculation are based on
expert opinion and data from previous experiments and are represented as purely
sinusoidal curves that allow for similar handling of remediation (bottom horizontal line)
and graduation (top horizontal line), Figure 7. Each of the four sinusoidal curves in the
middle of the graph represent action taken for each of the four hint levels, see Figure 5.
The highest curve represents Hint Level 0 (the user responded correctly without
assistance).  The next lines moving to the bottom of the page represent the next levels,
e.g.,  Hint Level 1( the user responded correctly on the second try based only on the
information that their first attempt was incorrect) and Hint Level 3 (lowest curve) the user
has not responded correctly and is shown the correct answer.  The straight diagonal line
shows the effective “win-loss” of each curve.  The straight horizontal lines show the
current value for each of the 7 sub-skills (some overlap).  The top most horizontal line
represents the current graduation level and the bottom horizontal line below most of the
curves represents the need for remediation.  When the average of the two main skills (not
shown as such) rise above the graduation line (top horizontal line), the student is
promoted to the next tutor program (Phase 2).  If one (or many) sub-skill(s) drops below
the current remediation line, a flag is sent to the Student Model, which requests
remediation for that skill.  These levels are adjusted dynamically based on the student’s
performance. Struggling students are allowed to “graduate” at a lower value or are
remediated sooner, while stronger students are pushed to graduate at a higher score and
remediation is delayed.  This behavior is designed to mimic traditional teaching. The
Student Model contains a small handful of API functions specific to maintaining any
given subskill.

5 Evaluation and Discussion
Twenty-eight participants (twenty-one males and seven females) were recruited from

the schools of engineering and computer science to evaluate the rotation tutor.  All
participants were given two pretests.  The first pretest was the Shepard and Metzler’s
M.R.T. Test of Spatial Ability (MRT).  As a second pretest, participants were randomly
assigned to receive either odd or even numbered problems from the Purdue Spatial
Visualization Test (PSVT).  The ten highest scoring participants on the MRT were
classified as “high spatial”.  The ten lowest scoring participants were classified as “low
spatial.”  The remaining eight participants were considered “neutral”.

After interacting with the tutor, as a posttest the participants retook the MRT.  The
two sections of the test were reversed and the answers shuffled, otherwise they received
similar questions as in the pretest.  The students also took the PSVT again as a posttest,
this time taking the PSVT problems they did not receive on the pretest.

The most interesting results were realized when comparing the ten high spatial to the
ten low spatial participants.  On the MRT, high spatial students had an average increase
in score from pre to posttest of 1.10 points with the mean increasing from 35.0 to 36.1.
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The low spatial students had an average increase of 8.4 points with the mean increasing
from 13.0 to 21.4.  Using a one-way ANOVA, this result was statistically significant,
F(1,18)=10.763, p < .01.

The expert system was designed such that students with advanced spatial abilities
would graduate from the tutor faster than students with lower spatial abilities.  This
allowed lower spatials to receive more practice and feedback during their session while,
at the same time, preventing high spatials – who already have an intuitive grasp on the
subject matter – from becoming bored or frustrated.  The high spatials required an
average of 9.7 problems to reach mastery criterion while the low spatials required an
average of 17.9 problems to reach mastery criterion.  This result was statistically
significant, F(1,18)=6.717, p < .01.

Finally, the results from the PSVT also showed interesting results.  There was an
across the board increase in PSVT scores as well.  While the high spatials had higher
overall scores (41.5 pretest; 51.5 posttest; 10.0 point change) than low spatials (37.8
pretest; 37.8 posttest; 7.2 point change), there was no significant difference between high
and low spatial participants on PSVT score increase.  This demonstrates that the
additional practice the low spatials received with the tutor helped their overall scores the
same amount as practice helped the high spatials.

6 Related Literature
 A student’s performance with a computer tutor can be highly correlated to that

student’s cognitive development [9] Educational tasks need to be matched to a user’s
cognitive level in an appropriate manner to maximize educational efficiency. .  The most
frequent modeling approach is to measure the degree of the student’s ability in a “topic”
or the probability that he has mastered a topic. This decision is used to reason whether to
promote the student to a more complex topic or to control the difficulty level of the
activity [6].  However, more complicated types of reasoning are often required. For
example, should the system review a previously learned topic, should it give the student a
new problem to solve or resent another example of the processes involved? Is the student
confused or has he forgotten this topic?

[bev to complete this] [10] defined a range of next possible topics for each student.
{Cite [11]} cite Ben doubly} Dynamic Cognitive Range

Intelligent computer tutors have been used to identify student’s cognitive range,
track their changing states dynamically and adapt the curriculum optimally to the
individual’s learning needs in real time [ Arroyo, Codeine, Anderson, Beck]. Such tutors
have mapped each student’s developmental or cognitive level, tracked her position within
the range  [DuBouley] and dynamically varied the problem or level of complexity of the
task to match skill level in real time. Evidence of improved learning efficiency using
intelligent tutors shows that they can achive 2 sigma improvement over classroom
leaning of the same topics [Shute, Fletcher].

 [Describe engineering tutors???]
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